Chapter 1 of Class 8 Maths focuses on Rational Numbers, which are numbers that can be expressed as the ratio of two integers, pq\frac{p}{q}qp, where ppp and qqq are integers, and q≠0q \neq 0q=0. This chapter covers operations, properties, and representation of rational numbers.
Exercise 1.1: Understanding Rational Numbers
Q1.
Is 75\frac{7}{5}57 a rational number?
Solution:
Yes, 75\frac{7}{5}57 is a rational number because it can be expressed as a ratio of two integers, where the denominator is non-zero.
Q2.
Identify the rational numbers from the following:
(a) 43,\frac{4}{3},34,
(b) 0,0,0,
(c) 2,\sqrt{2},2,
(d) −5-5−5
Solution:
(a) 43\frac{4}{3}34 is a rational number.
(b) 000 is a rational number because it can be expressed as 01\frac{0}{1}10.
(c) 2\sqrt{2}2 is not a rational number (it’s irrational).
(d) −5-5−5 is a rational number because it can be expressed as −51\frac{-5}{1}1−5.
Exercise 1.2: Operations with Rational Numbers
Q1.
Add: 35+25\frac{3}{5} + \frac{2}{5}53+52
Solution:
Since the denominators are the same, we add the numerators:35+25=3+25=55=1\frac{3}{5} + \frac{2}{5} = \frac{3 + 2}{5} = \frac{5}{5} = 153+52=53+2=55=1
Q2.
Subtract: 78−48\frac{7}{8} – \frac{4}{8}87−84
Solution:
Since the denominators are the same, we subtract the numerators:78−48=7−48=38\frac{7}{8} – \frac{4}{8} = \frac{7 – 4}{8} = \frac{3}{8}87−84=87−4=83
Q3.
Multiply: 34×56\frac{3}{4} \times \frac{5}{6}43×65
Solution:
Multiply the numerators and denominators:34×56=3×54×6=1524=58\frac{3}{4} \times \frac{5}{6} = \frac{3 \times 5}{4 \times 6} = \frac{15}{24} = \frac{5}{8}43×65=4×63×5=2415=85
Q4.
Divide: 710÷25\frac{7}{10} \div \frac{2}{5}107÷52
Solution:
To divide by a fraction, multiply by its reciprocal:710÷25=710×52=3520=74\frac{7}{10} \div \frac{2}{5} = \frac{7}{10} \times \frac{5}{2} = \frac{35}{20} = \frac{7}{4}107÷52=107×25=2035=47
Exercise 1.3: Properties of Rational Numbers
Q1.
What is the additive inverse of 37\frac{3}{7}73?
Solution:
The additive inverse of 37\frac{3}{7}73 is −37-\frac{3}{7}−73, because37+(−37)=0\frac{3}{7} + \left( -\frac{3}{7} \right) = 073+(−73)=0
Q2.
What is the multiplicative inverse of 45\frac{4}{5}54?
Solution:
The multiplicative inverse of 45\frac{4}{5}54 is 54\frac{5}{4}45, because45×54=1\frac{4}{5} \times \frac{5}{4} = 154×45=1
Q3.
Is −68\frac{-6}{8}8−6 a rational number in its simplest form?
Solution:
The fraction −68\frac{-6}{8}8−6 simplifies to −34\frac{-3}{4}4−3, which is a rational number in its simplest form.
Exercise 1.4: Representation of Rational Numbers on the Number Line
Q1.
Represent 23\frac{2}{3}32 on the number line.
Solution:
To represent 23\frac{2}{3}32, divide the line segment between 0 and 1 into 3 equal parts. Count 2 parts from 0 to mark 23\frac{2}{3}32.
Q2.
Represent −54-\frac{5}{4}−45 on the number line.
Solution:
To represent −54-\frac{5}{4}−45, first mark -1 on the number line, then move 1 unit to the left to mark −54-\frac{5}{4}−45.
40 Additional Practice Questions with Solutions
1.
Add: 56+26\frac{5}{6} + \frac{2}{6}65+62
Solution:56+26=5+26=76\frac{5}{6} + \frac{2}{6} = \frac{5 + 2}{6} = \frac{7}{6}65+62=65+2=67
2.
Subtract: 79−49\frac{7}{9} – \frac{4}{9}97−94
Solution:79−49=7−49=39=13\frac{7}{9} – \frac{4}{9} = \frac{7 – 4}{9} = \frac{3}{9} = \frac{1}{3}97−94=97−4=93=31
3.
Multiply: 37×58\frac{3}{7} \times \frac{5}{8}73×85
Solution:37×58=1556\frac{3}{7} \times \frac{5}{8} = \frac{15}{56}73×85=5615
4.
Divide: 610÷35\frac{6}{10} \div \frac{3}{5}106÷53
Solution:610÷35=610×53=3030=1\frac{6}{10} \div \frac{3}{5} = \frac{6}{10} \times \frac{5}{3} = \frac{30}{30} = 1106÷53=106×35=3030=1
5.
Find the additive inverse of 78\frac{7}{8}87.
Solution:
The additive inverse of 78\frac{7}{8}87 is −78-\frac{7}{8}−87.
6.
Find the multiplicative inverse of −59\frac{-5}{9}9−5.
Solution:
The multiplicative inverse of −59\frac{-5}{9}9−5 is −95\frac{-9}{5}5−9.
7.
Express 1525\frac{15}{25}2515 in its simplest form.
Solution:
1525=35\frac{15}{25} = \frac{3}{5}2515=53 (dividing both numerator and denominator by 5).
8.
Represent 54\frac{5}{4}45 on the number line.
Solution:
First mark 1 and then move 1 unit to the right to mark 54\frac{5}{4}45.
9.
Add 12+23\frac{1}{2} + \frac{2}{3}21+32.
Solution:12+23=36+46=76\frac{1}{2} + \frac{2}{3} = \frac{3}{6} + \frac{4}{6} = \frac{7}{6}21+32=63+64=67
10.
Subtract 38−78\frac{3}{8} – \frac{7}{8}83−87.
Solution:38−78=3−78=−48=−12\frac{3}{8} – \frac{7}{8} = \frac{3 – 7}{8} = \frac{-4}{8} = \frac{-1}{2}83−87=83−7=8−4=2−1
11.
Multiply 25×−34\frac{2}{5} \times \frac{-3}{4}52×4−3.
Solution:25×−34=−620=−310\frac{2}{5} \times \frac{-3}{4} = \frac{-6}{20} = \frac{-3}{10}52×4−3=20−6=10−3
12.
Divide 56÷49\frac{5}{6} \div \frac{4}{9}65÷94.
Solution:56÷49=56×94=4524=158\frac{5}{6} \div \frac{4}{9} = \frac{5}{6} \times \frac{9}{4} = \frac{45}{24} = \frac{15}{8}65÷94=65×49=2445=815
13.
Add −34+12-\frac{3}{4} + \frac{1}{2}−43+21.
Solution:−34+12=−34+24=−3+24=−14-\frac{3}{4} + \frac{1}{2} = -\frac{3}{4} + \frac{2}{4} = \frac{-3 + 2}{4} = \frac{-1}{4}−43+21=−43+42=4−3+2=4−1
14.
Find the additive inverse of −115\frac{-11}{5}5−11.
Solution:
The additive inverse of −115\frac{-11}{5}5−11 is 115\frac{11}{5}511.
15.
Simplify the expression: 49+39\frac{4}{9} + \frac{3}{9}94+93.
Solution:49+39=4+39=79\frac{4}{9} + \frac{3}{9} = \frac{4 + 3}{9} = \frac{7}{9}94+93=94+3=97
16.
Multiply −78×25-\frac{7}{8} \times \frac{2}{5}−87×52.
Solution:−78×25=−1440=−720-\frac{7}{8} \times \frac{2}{5} = \frac{-14}{40} = \frac{-7}{20}−87×52=40−14=20−7
17.
Divide 910÷32\frac{9}{10} \div \frac{3}{2}109÷23.
Solution:910÷32=910×23=1830=35\frac{9}{10} \div \frac{3}{2} = \frac{9}{10} \times \frac{2}{3} = \frac{18}{30} = \frac{3}{5}109÷23=109×32=3018=53
18.
Write −68\frac{-6}{8}8−6 as a rational number in its simplest form.
Solution:
−68=−34\frac{-6}{8} = \frac{-3}{4}8−6=4−3.
19.
Represent 35\frac{3}{5}53 on the number line.
Solution:
Divide the segment between 0 and 1 into 5 equal parts, and mark 3 parts from 0 to represent 35\frac{3}{5}53.
20.
Find the reciprocal of 56\frac{5}{6}65.
Solution:
The reciprocal of 56\frac{5}{6}65 is 65\frac{6}{5}56.
21.
Subtract −47-\frac{4}{7}−74 from 67\frac{6}{7}76.
Solution:67−(−47)=67+47=107\frac{6}{7} – \left(-\frac{4}{7}\right) = \frac{6}{7} + \frac{4}{7} = \frac{10}{7}76−(−74)=76+74=710
22.
Simplify 69+−49\frac{6}{9} + \frac{-4}{9}96+9−4.
Solution:69+−49=6−49=29\frac{6}{9} + \frac{-4}{9} = \frac{6 – 4}{9} = \frac{2}{9}96+9−4=96−4=92
23.
Find the multiplicative inverse of 97\frac{9}{7}79.
Solution:
The multiplicative inverse of 97\frac{9}{7}79 is 79\frac{7}{9}97.
24.
Divide −89÷23\frac{-8}{9} \div \frac{2}{3}9−8÷32.
Solution:−89÷23=−89×32=−2418=−43\frac{-8}{9} \div \frac{2}{3} = \frac{-8}{9} \times \frac{3}{2} = \frac{-24}{18} = \frac{-4}{3}9−8÷32=9−8×23=18−24=3−4
25.
Add −58+78-\frac{5}{8} + \frac{7}{8}−85+87.
Solution:−58+78=−5+78=28=14-\frac{5}{8} + \frac{7}{8} = \frac{-5 + 7}{8} = \frac{2}{8} = \frac{1}{4}−85+87=8−5+7=82=41
26.
Represent −34\frac{-3}{4}4−3 on the number line.
Solution:
First mark −1-1−1, then move 14\frac{1}{4}41 units to the left to mark −34\frac{-3}{4}4−3.
27.
Simplify the expression: 85+35\frac{8}{5} + \frac{3}{5}58+53.
Solution:85+35=8+35=115\frac{8}{5} + \frac{3}{5} = \frac{8 + 3}{5} = \frac{11}{5}58+53=58+3=511
28.
Subtract 34\frac{3}{4}43 from 54\frac{5}{4}45.
Solution:54−34=5−34=24=12\frac{5}{4} – \frac{3}{4} = \frac{5 – 3}{4} = \frac{2}{4} = \frac{1}{2}45−43=45−3=42=21
29.
Multiply 45×56\frac{4}{5} \times \frac{5}{6}54×65.
Solution:45×56=2030=23\frac{4}{5} \times \frac{5}{6} = \frac{20}{30} = \frac{2}{3}54×65=3020=32
30.
Find the reciprocal of 67\frac{6}{7}76.
Solution:
The reciprocal of 67\frac{6}{7}76 is 76\frac{7}{6}67.
31.
Add −25+75-\frac{2}{5} + \frac{7}{5}−52+57.
Solution:−25+75=−2+75=55=1-\frac{2}{5} + \frac{7}{5} = \frac{-2 + 7}{5} = \frac{5}{5} = 1−52+57=5−2+7=55=1
32.
Find the multiplicative inverse of 43\frac{4}{3}34.
Solution:
The multiplicative inverse of 43\frac{4}{3}34 is 34\frac{3}{4}43.
33.
Simplify 1015\frac{10}{15}1510.
Solution:
1015=23\frac{10}{15} = \frac{2}{3}1510=32 (dividing both numerator and denominator by 5).
34.
Multiply 32×−74\frac{3}{2} \times \frac{-7}{4}23×4−7.
Solution:32×−74=−218\frac{3}{2} \times \frac{-7}{4} = \frac{-21}{8}23×4−7=8−21
35.
Subtract −25−35\frac{-2}{5} – \frac{3}{5}5−2−53.
Solution:−25−35=−2−35=−55=−1\frac{-2}{5} – \frac{3}{5} = \frac{-2 – 3}{5} = \frac{-5}{5} = -15−2−53=5−2−3=5−5=−1
36.
Divide 23÷45\frac{2}{3} \div \frac{4}{5}32÷54.
Solution:23÷45=23×54=1012=56\frac{2}{3} \div \frac{4}{5} = \frac{2}{3} \times \frac{5}{4} = \frac{10}{12} = \frac{5}{6}32÷54=32×45=1210=65
37.
Simplify 59−29\frac{5}{9} – \frac{2}{9}95−92.
Solution:59−29=5−29=39=13\frac{5}{9} – \frac{2}{9} = \frac{5 – 2}{9} = \frac{3}{9} = \frac{1}{3}95−92=95−2=93=31
38.
Find the reciprocal of 78\frac{7}{8}87.
Solution:
The reciprocal of 78\frac{7}{8}87 is 87\frac{8}{7}78.
39.
Represent −32-\frac{3}{2}−23 on the number line.
Solution:
First mark −1-1−1, then move 12\frac{1}{2}21 units to the left to mark −32-\frac{3}{2}−23.
40.
Subtract 49−19\frac{4}{9} – \frac{1}{9}94−91.
Solution:49−19=4−19=39=13\frac{4}{9} – \frac{1}{9} = \frac{4 – 1}{9} = \frac{3}{9} = \frac{1}{3}94−91=94−1=93=31
Practice Questions
1.
Add: 79+29\frac{7}{9} + \frac{2}{9}97+92
Solution:79+29=7+29=99=1\frac{7}{9} + \frac{2}{9} = \frac{7 + 2}{9} = \frac{9}{9} = 197+92=97+2=99=1
2.
Subtract: 56−13\frac{5}{6} – \frac{1}{3}65−31
Solution:56−13=56−26=5−26=36=12\frac{5}{6} – \frac{1}{3} = \frac{5}{6} – \frac{2}{6} = \frac{5 – 2}{6} = \frac{3}{6} = \frac{1}{2}65−31=65−62=65−2=63=21
3.
Multiply: −45×38\frac{-4}{5} \times \frac{3}{8}5−4×83
Solution:−45×38=−1240=−310\frac{-4}{5} \times \frac{3}{8} = \frac{-12}{40} = \frac{-3}{10}5−4×83=40−12=10−3
4.
Divide: 89÷47\frac{8}{9} \div \frac{4}{7}98÷74
Solution:89÷47=89×74=5636=149\frac{8}{9} \div \frac{4}{7} = \frac{8}{9} \times \frac{7}{4} = \frac{56}{36} = \frac{14}{9}98÷74=98×47=3656=914
5.
Find the reciprocal of 56\frac{5}{6}65.
Solution:
The reciprocal of 56\frac{5}{6}65 is 65\frac{6}{5}56.
6.
Express 1824\frac{18}{24}2418 in its simplest form.
Solution:
1824=34\frac{18}{24} = \frac{3}{4}2418=43 (dividing both numerator and denominator by 6).
7.
Subtract 710\frac{7}{10}107 from 910\frac{9}{10}109.
Solution:910−710=9−710=210=15\frac{9}{10} – \frac{7}{10} = \frac{9 – 7}{10} = \frac{2}{10} = \frac{1}{5}109−107=109−7=102=51
8.
Add −34+58\frac{-3}{4} + \frac{5}{8}4−3+85.
Solution:−34+58=−68+58=−6+58=−18\frac{-3}{4} + \frac{5}{8} = \frac{-6}{8} + \frac{5}{8} = \frac{-6 + 5}{8} = \frac{-1}{8}4−3+85=8−6+85=8−6+5=8−1
9.
Find the additive inverse of −67\frac{-6}{7}7−6.
Solution:
The additive inverse of −67\frac{-6}{7}7−6 is 67\frac{6}{7}76.
10.
Multiply 23×45\frac{2}{3} \times \frac{4}{5}32×54.
Solution:23×45=815\frac{2}{3} \times \frac{4}{5} = \frac{8}{15}32×54=158
11.
Divide 1113÷34\frac{11}{13} \div \frac{3}{4}1311÷43.
Solution:1113÷34=1113×43=4439\frac{11}{13} \div \frac{3}{4} = \frac{11}{13} \times \frac{4}{3} = \frac{44}{39}1311÷43=1311×34=3944
12.
Simplify −1218\frac{-12}{18}18−12.
Solution:
−1218=−23\frac{-12}{18} = \frac{-2}{3}18−12=3−2 (dividing both numerator and denominator by 6).
13.
Add 15+415\frac{1}{5} + \frac{4}{15}51+154.
Solution:15+415=315+415=715\frac{1}{5} + \frac{4}{15} = \frac{3}{15} + \frac{4}{15} = \frac{7}{15}51+154=153+154=157
14.
Subtract 911−511\frac{9}{11} – \frac{5}{11}119−115.
Solution:911−511=9−511=411\frac{9}{11} – \frac{5}{11} = \frac{9 – 5}{11} = \frac{4}{11}119−115=119−5=114
15.
Find the multiplicative inverse of −49\frac{-4}{9}9−4.
Solution:
The multiplicative inverse of −49\frac{-4}{9}9−4 is −94\frac{-9}{4}4−9.
16.
Simplify −68+38\frac{-6}{8} + \frac{3}{8}8−6+83.
Solution:−68+38=−6+38=−38\frac{-6}{8} + \frac{3}{8} = \frac{-6 + 3}{8} = \frac{-3}{8}8−6+83=8−6+3=8−3
17.
Multiply −78×23\frac{-7}{8} \times \frac{2}{3}8−7×32.
Solution:−78×23=−1424=−712\frac{-7}{8} \times \frac{2}{3} = \frac{-14}{24} = \frac{-7}{12}8−7×32=24−14=12−7
18.
Divide 1415÷710\frac{14}{15} \div \frac{7}{10}1514÷107.
Solution:1415÷710=1415×107=140105=43\frac{14}{15} \div \frac{7}{10} = \frac{14}{15} \times \frac{10}{7} = \frac{140}{105} = \frac{4}{3}1514÷107=1514×710=105140=34
19.
Express 816\frac{8}{16}168 in its simplest form.
Solution:
816=12\frac{8}{16} = \frac{1}{2}168=21 (dividing both numerator and denominator by 8).
20.
Find the additive inverse of 56\frac{5}{6}65.
Solution:
The additive inverse of 56\frac{5}{6}65 is −56-\frac{5}{6}−65.
Class 7 Maths Chapter 6: Integers Worksheet with Answers
For more updates: Click Here.
This worksheet provides a comprehensive set of questions on rational numbers, covering various concepts and operations. If you need further explanation or more practice questions, feel free to ask

As a seasoned content writer specialized in the fitness and health niche, Arun Bhagat has always wanted to promote wellness. After gaining proper certification as a gym trainer with in-depth knowledge of virtually all the information related to it, he exercised his flair for writing interesting, informative content to advise readers on their healthier lifestyle. His topics range from workout routines, nutrition, and mental health to strategies on how to be more fit in general. His writing is informative but inspiring for people to achieve their wellness goals as well. Arun is committed to equipping those he reaches with the insights and knowledge gained through fitness.